Structural Calculations for:

Yuan Residence

3611 W Mercer Way
Mercer Island, WA 98040

Prepared for: Brandt Design Group
Job \#: 01519-2019-01-00
Date: July 16, 2019

Criteria Sheet

Seismic Design
ASCE 7-10 Seismic Analysis
Equivalent Lateral Force Procedure

Seismic Force Resisting System: Per Table 12.2-1	System:	Bearing Wall Systems	Type:

Seismic Design Cat.	D
Risk Category	II
Site Class	II, or III, or IV per Table 1.5-1
Diaphragm Flexibility	Flexible
	Bearils report \quad (D assumed, without soils report)

Vertical Distribution		ASD	$\rho=1.3$		Story Shear ASD							
Level	$h_{\text {x }}(\mathrm{ft})$	$\mathrm{W}_{\mathrm{x}}(\mathrm{k})$	$\left.\mathrm{h}_{\mathrm{x}}{ }^{\text {(}} \mathrm{ft}\right)$	$W_{x} h_{x}{ }^{\text {k }}$				Diaphragm Force (ρ not included)				
					C_{vx} (\%)	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	SV (k)	$\mathrm{F}_{\mathrm{px}, \text { calc }}$	$\mathrm{F}_{\mathrm{px} \text { min }}$	$\mathrm{F}_{\mathrm{px}, \max }$	$\mathrm{F}_{\mathrm{px} \text { design }}$	$y=F_{p x} / F_{x}$
Roof	29.8	84.7	29.8	2527	0.577	16.2	16.2	12.5	11.1	22.2	12.5	0.77
Main	14.3	130	14.3	1849	0.423	11.9	28.1	13.1	17.0	33.9	17.0	1.43
Σ		214.4		4375		28.1						

Yuan Residence

DATE	$6 / 19 / 2019$
PROJ. \#	
DESIGN	SRW
SHEET	2

Wind Design - MWFRS
ASCE 7-10 Chapter 27 - Directional Procedure

Design Method		ASD
Wind Coefficients		
Exposure C $\mathrm{~V}=$ 110 $\mathrm{~K}_{\mathrm{d}}=$ 0.85 $\mathrm{~K}_{\mathrm{h}}=$ 1.13 $\mathrm{G}=$ 0.85		

Transverse Wind Pressures
L/B $=0.52 \quad \mathrm{~h} / \mathrm{L}=1.57$

| Pressure Coefficients from Figure 27.4-1: |
| :--- | :---: |
| Bldg Face C_{p}
 Windward Wall 0.8
 Leeward Wall -0.50
 Windward Roof $-1.3 /-0.18$
 Leeward Roof -0.70 |$>$

Location and Building Dimensions
Calculate Kzt? No Kzt 1.00 Roof Type Monoslope Roof Angle - Transverse Dir 5.9 degrees Roof Angle - Long Dir 0 degrees Ground to top of roof 59.83 ft Bot of roof to top of roof 4.75 ft Mean Roof Height, h 57.455 ft Short Plan Dimension 36.5 ft Long Plan Dimension 70.25 ft Parapet ? No Around to top of parapet ft Ht of 2nd Level Above Grade 14.25 ft

Roof Pressures (Unfactored)

Windward		Leeward	Horiz Proj (psf)
Max	Min		$\mathbf{4 . 8 0}$
-4.5	-32.8	-17.6	$\mathbf{4 . 8 0}$

Longitudinal Wind Pressures

L/B=1.92 $\mathrm{h} / \mathrm{L}=0.82$

| Pressure Coefficients from Figure 27.4-1: |
| :--- | :---: |
| Bldg Face C_{p}
 Windward Wall 0.8
 Leeward Wall -0.32
 Windward Roof $-1.15 /-0.18$
 Leeward Roof -0.70 |

Wall Pressures (Unfactored):

Ht	K_{z}	q_{z}	$\mathrm{P}_{\text {ww walls }}$	$\mathrm{P}_{\text {lwwalls }}$	P $\mathrm{P}_{\text {walls }}$ (psf)
$0-15$	0.85	22.38	15.22	7.94	$\mathbf{1 3 . 9 0}$
$15-20$	0.9	23.70	16.11	7.94	$\mathbf{1 4 . 4 3}$
$20-25$	0.94	24.75	16.83	7.94	$\mathbf{1 4 . 8 6}$
$25-30$	0.98	25.80	17.55	7.94	$\mathbf{1 5 . 2 9}$
$30-40$	1.04	27.38	18.62	7.94	$\mathbf{1 5 . 9 4}$
$41-50$	1.09	28.70	19.52	7.94	$\mathbf{1 6 . 4 7}$
$51-60$	1.13	29.75	20.23	7.94	$\mathbf{1 6 . 9 0}$
$61-70$	1.17	30.81	20.95	7.94	$\mathbf{1 7 . 3 3}$
$71-80$	1.21	31.86	21.66	7.94	$\mathbf{1 7 . 7 6}$
$81-90$	1.24	32.65	22.20	7.94	$\mathbf{1 8 . 0 9}$
$91-100$	1.26	33.18	22.56	7.94	$\mathbf{1 8 . 3 0}$

Roof Pressures (Unfactored)

Windward		Leeward	Horiz Proj (psf)
Max	Min		$\mathbf{4 . 8 0}$
-4.5	-29.1	-17.6	$\mathbf{4 . 8 0}$

WIND EXPOSURE CATEGORIES:

Wind Exposure Category	\square	Exposure 'C' (1500 feet from Lake)
	\square	Exposure ' B ' (all other areas)

WIND SPEED-UP (TOPOGRAPHIC EFFECT) - $\mathrm{K}_{\mathbf{z}} \mathrm{t}$ Factor :

	$K_{\mathrm{z}} \mathrm{t}$ Factor
	$\mathrm{K}_{\mathrm{z}}=1.0$
	$\mathrm{~K}_{\mathrm{z}} \mathrm{t}=1.3$
	$\mathrm{~K}_{\mathrm{z}} \mathrm{t}=1.6$
	$\mathrm{~K}_{\mathrm{z}} \mathrm{t}=1.9$

STRUCTURAL ENGINEERING

Yuan Residence	4/30/2019	
Wind Criteria		
	вro, .f	SRW
	DEsicn	

SEISMIL MASS
GARAGE ROO

$$
\begin{aligned}
& A R E A=790 r^{2}+200 r^{2}=990 r^{2} \\
& W=35 \text { pSF (incluDing Graenu0C) }+10 p S F / z=40 \text { psF } \\
& \text { MASS }=\frac{790 F^{2}}{990} \times 40 p S F=36340 \mathrm{lB} \quad 3960 \mathrm{cB}
\end{aligned}
$$

PCOF

$$
M A S S=2760 \pi^{2}(47 \mathrm{pSF})-129720 \mathrm{LB}
$$

SEISMIC LOADS (MAN) $0.53(16.2 \mathrm{~K})=8.6 \mathrm{~K}$ SEISMIC LOADS (GARAGE)

$$
\begin{aligned}
& F_{1}, R O O F=\frac{0.52(6.3 \mathrm{C})}{11.8 \mathrm{~K}} \mathrm{R}, \mathrm{MAN}
\end{aligned}
$$

$$
f(x, \text { oor }=0,43(1 / 31)=7 k
$$

$$
0.47(16.2 k)=7.6 \mathrm{k}
$$

$$
861 \angle 143^{\prime}=200 p \mathrm{~F} \text {. }
$$

N/S

$$
7.6 k / 31^{\prime}=245 p F^{1}
$$

N / s
N / s

$$
V_{E Q, R C O F}=7 k / 31^{\prime}=226 \text { PVF }
$$

Elw $\quad 8.6 k 10^{\circ}=123 p u$

$$
\text { VEQ, Ror C } 93 k / 90^{\prime}=133 p \mathrm{P}=
$$

E/w
74k/25:304pLe

$$
\text { VEa, RCOF }=7 k / 25^{\prime}=280 p u=
$$

yutn
\qquad
LATERAL
DATE
PROJ. \#
\qquad

$$
\begin{aligned}
& \frac{A C R}{A R}=490 r^{2} \\
& W \text { bppethosf } 12=20 p s= \\
& \text { MASS = H90LB } 45100 \mathrm{CB}
\end{aligned}
$$

WINS
$P_{\text {Roof }}=48 \mathrm{PSF}$
Pwtus d to $5^{\prime}=16.7 p s f$

$$
\begin{aligned}
& 15^{\prime}+020^{\prime}=17.2 \mathrm{psF} \\
& 20^{\prime}+0.25^{\prime}=17.7 \mathrm{ps} \\
& 25^{\prime}+030^{\prime}=18.1 \mathrm{ps}^{2}=
\end{aligned}
$$

AT EARAGE:
VW, RONF $16.7 \mathrm{PF} \times 11 / 2=92$ pu

AT MAN:
VW/ROOF 18.1 pSF $\times 15 / 2=136$ pLF
Vw, UPG=e, 177 Pr $\times 15^{1} / 2+17.2$ psf $\times 15 / 2=262$ ple
\qquad

North-South

Level	Roof - Main				Roof - Main/Garage		Roof - Main/Garage		Roof - Garage	
Wall Line	1		2		3		4		5	
Lateral Force	Wind	Seismic								
V (k)	1.836	2.7			2.924	4.3	2.468	5.275	1.38	3.675
L (ft)	19	19	8.5	8.5	20	20	18.5	18.5	25	25
L red (ft)	16.1	16.1	8.5	8.5	16.85	16.85	18.5	18.5	25	25
V (plf)	114	168	0	0	174	255	133	285	55	147
SW	W6		W6		W4		W4		W6	
H (ft)	15	15	0	0	12	12	9	9	9	9
OT (lb)	1449	2132	0	0	1754	2580	1201	2566	497	1323
Design OT (lb)	2132		0		2580		2566		1323	
Holdown	HDU2		NA		HDU4		HDU4		HDU2	

OT-DL										
Level	Upper									
Wall Line	1		2		3		4		5	
Lateral Force	Wind	Seismic								
V (k)	1.834	1.918	3.537	3.699	3.799	3.973	2.096	2.192		
V above (k)	1.836	2.7	0	0	2.924	4.3	2.468	5.275		
Total V (k)	3.67	4.618	3.537	3.699	6.723	8.273	4.564	7.467		
L (ft)	21.5	21.5	24.5	24.5	38	38	19	19		
L red (ft)	17.7	17.7	24.5	24.5	38	38	19	19		
V (plf)	207	261	144	151	177	218	240	393		
SW	W4		W6		W6		NA			
H (ft)	13	13	12	12	12	12	12	12		
OT (lb)	2219	2792	1732	1812	2123	2613	2883	4716		
Total OT (lb)	3669	4924	1732	1812	3877	5193	4083	7282		
Design OT (Ib)	4924		1812		5193		7282			
Holdown	HDU5		HDU2		HDU5		NA			

structural ENGINEERING

Yuan Residence
\quad Lateral Design

	$2019-00-14$
DATE	
PROJ.\#	SRW
DESIGN	
SHEET	

Yuan Residence	2019-06-14	
${ }^{\text {Project }}$ Lateral Design	DATE	
	*	SRW
	DESSGN	

East-West

Level	Roof -	arage	Roof - Main										
Wall Line	A		B		C		D		E		F	G	
Lateral Force	Wind	Seismic		Wind	Seismic								
V (k)	1.104	3.648	1.224	1.107	3.756	6.0465			3.468	3.1365		2.04	1.845
L (ft)	31.5	31.5	23	23	11	11	7	7	7.5	7.5		20	20
L red (ft)	31.5	31.5	23	23	9.2	9.2	6.35	6.35	7.5	7.5		19.5	19.5
V (plf)	35	116	53	48	408	657	0	0	462	418		105	95
SW	W6		W6		2W3		W6		W3			W6	
H (ft)	9	9	9	9	9	9	15	15	12	12		15	15
OT (lb)	315	1042	479	433	3073	4947	0	0	5549	5018		1530	1384
Design OT (lb)	1042		479		4947		0		5549			15	
Holdown	NA		NA		HDU5		NA		HDU5			CS16	

Level	Upper													
Wall Line	A		B		C		D		E		F		G	
Lateral Force	Wind	Seismic												
V (k)			2.358	1.521	4.192	2.704	2.751	1.7745	2.358	1.521	3.93	2.535	2.489	1.6055
V above (k)			1.224	1.107	3.756	6.0465	0	0	3.468	3.1365	0	0	2.04	1.845
Total V (k)			3.582	2.628	7.948	8.7505	2.751	1.7745	5.826	4.6575	3.93	2.535	4.529	3.4505
L (ft)			24	24	27	27	10	10	10	10	10	10	20.5	20.5
L red (ft)			24	24	27	27	10	10	10	10	10	10	20.5	20.5
V (plf)			149	110	294	324	275	177	583	466	393	254	221	168
SW			W		W		W		W		W		W	
H (ft)			12	12	12	12	12	12	12	12	12	12	12	12
OT (lb)			1791	1314	3532	3889	3301	2129	6991	5589	4716	3042	2651	2020
Total OT (lb)			2270	1747	6606	8836	3301	2129	12540	10607	4716	3042	4181	3404
Design OT (lb)			2270		8836		3301		12540		4716		4181	
Holdown			HDU4		HDU11		HDU4		HDU14		HDU5		HDU4	

$\frac{\text { Yuan Residence }}{\text { Probect }}$

DATE	2019-06-14
prov.it	SRW
DEsGow	SRW
ster	

ROOF KEY PLAN:

Steel Size			HSS6X6X1/4		
T=	28.6		Fy=	46	ksi
$\Delta=$	0.29	in	$\mathrm{Mn} / \Omega=$	25.7	k-ft
$1 /$	576		$\mathrm{V} \mathrm{n} / \Omega=$	0.0	kips

Yuan Residence	Date: Project \#	06/19/19
Roof Beams		
	Design:	haa
	Sheet:	1

Beam		Roof B9	DF-L	x	12
w1=	70	plf	R1=	-1960	lbs
w2=	70	plf	R2=	4,900	lbs
L1 $=$	7	ft	M $+=$	-	lb -ft
L2=	7	ft	M-=	15,435	lb -ft
$\mathrm{X}=$	3.50	ft	$\mathrm{Fb}=$	2,509	psi
$\mathrm{P}=$	1,960	lbs	Fv=	91	psi
$\mathrm{b}=$	3.50	in	Δ span=	(0.110)	in
d=	11.25	in	I span/	(761)	
E=	1,700	ksi	Δ cant $=$	1.20	in
$\mathrm{Cv}=$	1.00		I cant/	140	

Steel Size			HSS6X6X5/8		
	Δ (in)	$1 /$	Fy=	46	ksi
span	-0.049	-1726	$\mathrm{Mn} / \Omega=$	53.3	k-ft
cant.	0.53	317	$\mathrm{Vn} / \Omega=$	0.0	kips

Beam		Roof B11	HF	3 x	10
w1=	360	plf	R1 =	2,309	lbs
w2=	360	plf	R2 =	2,309	lbs
L1=	1.25	ft	$\mathrm{M}=$	2,604	$\mathrm{lb}-\mathrm{ft}$
L2=	1.25	ft	$\mathrm{Fb}=$	731	psi
X=	1.25	ft	$\mathrm{Fv}=$	110	psi
$\mathrm{P}=$	3,717	lbs	$\Delta=$	0.01	in
$\mathrm{b}=$	3.00	in	1/	3,206	
d=	9.25	in	$\mathrm{Cv}=$	1.00	
E=	1,300	ksi			
R1	$\frac{\mathrm{w}}{-\mathrm{L} 1}$	1	$\frac{\mathrm{w} 2}{\mathrm{~L} 2}$	$\stackrel{4}{4}+1$	

Project:	Yuan Residence	Date:	06/19/19
	Roof Beams	Project \#:	
		Design:	haa
		Sheet:	2

Beam		Roof-B12	LSL	$31 / 2 \times$	11	7/8
w1=	370	plf	R1 =	2,566	lbs	
w2=	370	plf	$\mathrm{R} 2=$	2,566	lbs	
L1=	6	ft	$\mathrm{M}=$	8,735	lb -ft	
L2=	6	ft	$\mathrm{Fb}=$	1,274	psi	
X=	6.0	ft	$\mathrm{Fv}=$	79	psi	
$\mathrm{P}=$	692	lbs	$\Delta=$	0.28	in	
$\mathrm{b}=$	3.50	in	$1 /$	506		
d=	11.88	in	$\mathrm{Cv}=$	1.00		
E=	1,550	ksi				

Beam	Roof-B13	HF	$2 \times$	8
W=	80 plf	$\mathrm{R}=$	260	lbs
L=	6.5 ft	$\mathrm{M}=$	423	ft-lbs
$\mathrm{b}=$	1.50 in	$\mathrm{Fb}=$	386	psi
$\mathrm{d}=$	7.25 in	Fv=	29	psi
E=	1300 ksi	$\Delta=$	0.05	in
$\mathrm{Cv}=$	$1.00 \leq 1.0$	$1 /$	1503	

Beam		Roof-B14	PSL	$51 / 4 \times$	11 7/8
w1=	80	plf	R1 =	1,362	lbs
w2=	80	plf	$\mathrm{R} 2=$	2,091	lbs
L1=	21	ft	$\mathrm{M}=$	11,105	$\mathrm{lb}-\mathrm{ft}$
L2=	6	ft	$\mathrm{Fb}=$	1,080	psi
X=	20.5	ft	Fv =	48	psi
$\mathrm{P}=$	1,333	lbs	$\Delta=$	0.70	in
$\mathrm{b}=$	5.25	in	I/	456	
$\mathrm{d}=$	11.88	in	$\mathrm{Cv}=$	0.98	
E=	2,000				

Beam		Roof B15	PSL	3 1/2 x	5 1/2
w1=	40	plf	R1=	92	lbs
w2=	100	plf	R2=	543	lbs
L1=	7.5	ft	M+=	106	$\mathrm{lb}-\mathrm{ft}$
L2=	2	ft	M-=	433	$\mathrm{lb}-\mathrm{ft}$
$\mathrm{X}=$	3.75	ft	$\mathrm{Fb}=$	295	psi
$\mathrm{P}=$	160	lbs	Fv=	23	psi
$\mathrm{b}=$	3.50	in	Δ span=	0.002	in
d=	5.50	in	I span/	40,360	
$\mathrm{E}=$	2,000	ksi	Δ cant $=$	0.02	in
$\mathrm{Cv}=$	1.00		I cant/	2,210	

Beam		Roof B16	PSL	3 1/2 x	$51 / 2$
w1=	130	plf	R1=	54	lbs
w2=	80	plf	R2=	1,330	lbs
L1=	4	ft	M+=	11	$\mathrm{lb-ft}$
L2=	1	ft	M-=	824	lb-ft
X=	2.00	ft	$\mathrm{Fb}=$	560	psi
$\mathrm{P}=$	783.92	lbs	Fv=	64	psi
$\mathrm{b}=$	3.50	in	Δ span=	(0.007)	in
d=	5.50	in	I span/	$(6,902)$	
E=	2,000	ksi	Δ cant $=$	0.02	in
$\mathrm{Cv}=$	1.00		I cant/	1,317	

STRUCTURAL ENGINEERING

2124 Third Avenue . Suite 100 . Seattle . WA 98121 www.swensonsayfaget.com
206.443.4870

Project: \qquad
Roof Beams
\qquad Project \#: \qquad \longrightarrow

Design:
Date: \qquad
06/19/19
\qquad

Sheet:

Beam: Load		Beam				
		Dead	Live	Snow	Factored	Location
	w_{1}	0.438	0.000	0.3125	0.750	Location
	w_{2}				0.000	
	w_{3}				0.000	
	w_{4}				0.000	
	w_{5}				0.000	
	w_{6}				0.000	
	w_{7}				0.000	
	w_{8}				0.000	
	w_{9}				0.000	
	w_{10}				0.000	
	t_{1}				0.000	
	t_{2}				0.000	
	t_{3}				0.000	
	t_{4}				0.000	
	t_{5}				0.000	
	t_{6}				0.000	
$\left\|\begin{array}{c} \bar{x} \\ \stackrel{\rightharpoonup}{c} \\ \stackrel{\rightharpoonup}{c} \\ 0 \end{array}\right\|$	P_{1}				0.000	
	P_{2}				0.000	
	P_{3}				0.000	
	P_{4}				0.000	
	P_{5}				0.000	
	P_{6}				0.000	
	P_{7}				0.000	
	P_{8}				0.000	
	P_{9}				0.000	
	P_{10}				0.000	

Support Locations and Reactions	
Number of Supports	3
Total Beam Length	$\mathbf{2 8 . 0 0}$
Left End Condition	Pinned
Right End Condition	Pinned
R_{1}	1.029
R_{2}	14.335
R_{2}	$\mathbf{0 . 0 0}$
R_{3}	5.636
R_{4}	0.000
R_{5}	$\mathbf{2 8 . 0 0}$
R_{5}	0.000
R_{6}	0.000
R_{7}	0.000
R_{7}	$\mathbf{2 8 . 0 0}$
R_{8}	0.000
R_{9}	0.000
R_{10}	$\mathbf{2 8 . 0 0}$
R_{10}	$\mathbf{2 8 . 0 0}$

Load Factors	
Dead	$\mathbf{1 . 0 0}$
Live	1.00
Snow	1.00

Demand Output		
Location, ft		
Shear, k	$\mathrm{V}=$	-6.09
Moment, $\mathrm{k}-\mathrm{ft}$	$\mathrm{M}=$	-24.02
Deflection, in	$\Delta=$	0.00
$\Delta /$ Span		$\mathrm{L} / 401330$

Stresses @ Input Location	
$\begin{aligned} & \mathrm{f}_{\mathrm{v}}(\mathrm{psi}) \\ & \mathrm{f}_{\mathrm{b}}(\mathrm{psi}) \end{aligned}$	$\begin{array}{r} -124 \\ -1681 \end{array}$
Max/Min Stresses	
$\mathrm{f}_{\mathrm{v}^{\prime} \max }$ (psi) $\mathrm{f}_{\mathrm{v}_{-} \text {Min }}(\mathrm{psi})$ $f_{b_{\text {_MAX }}}$ (psi) $\mathrm{f}_{\mathrm{b} \text { _MIN }}$ (psi)	168 -124 1482 -1684

Beam Properties	
E (ksi)	2000
b (in)	5.25
d (in)	14
I (in ${ }^{4}$)	$\mathbf{1 2 0 0 . 5}$
S (in 3)	171.5
A (in ${ }^{2}$)	73.5
I (Override)	
S (Override)	
A (Override)	

Span	$\mathrm{V}_{\text {Left }}$ (kips)	$\mathrm{V}_{\text {Right }}$ (kips)	M (-) (k-ft)	M (t) (k-ft)	$\Delta_{\text {TL }}$ (in)	@ $\mathrm{x}=$	L/	$\Delta_{\text {LI }}$ (in)	@ $\mathrm{x}=$	L/
Span 1	1.03	-6.10	-24.07	0.71	0.047 (\uparrow)	6.38	L/2416	0	-	L/ ∞
Span 2	8.24	-5.64	-24.07	21.18	-0.459 (\downarrow)	19.66	L/483	0	-	L/ ∞

PROJECT Yuan Residence - Roof Beam 2
\qquad
\qquad
ITRUCTURAL ENGINEERING

DATE 6/19/2019
\qquad
DESIGN haa

SHEET

PROJECT Yuan Residence - Roof Beam 2
\qquad
\qquad
structural
STRUCTURAL
ENGINEERING

DATE 6/19/2019
\qquad
DESIGN haa

SHEET

Level, Roof: Joist B17
1 piece(s) 11 7/8" TJI® 560 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$987 @ 41 / 2^{\prime \prime}$	$1984(3.50 ")$	Passed (50\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$950 @ 51 / 2^{\prime \prime}$	2358	Passed (40\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$5720 @ 12^{\prime} 4 "$	10925	Passed (52\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.423 @ 12^{\prime} 4^{\prime \prime}$	0.797	Passed (L/679)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$1.014 @ 12^{\prime} 4^{\prime \prime}$	1.196	Passed (L/283)	--	$1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~S} \mathrm{(All} \mathrm{Spans)}$

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 7' $4^{\prime \prime}$ o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $24^{\prime \prime} 8^{\prime \prime} 0 / \mathrm{c}$ unless detailed otherwise.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Snow	Total	
1-Stud wall - HF	5.50"	5.50"	$1.75{ }^{\prime \prime}$	576	411	987	Blocking
2 - Stud wall - HF	5.50"	5.50"	1.75"	576	411	987	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Load	Location (Side)	Spacing	$\begin{gathered} \text { Dead } \\ \mathbf{(0 . 9 0)} \end{gathered}$	$\begin{aligned} & \text { Snow } \\ & (1.15) \end{aligned}$	Comments
1 - Uniform (PSF)	0 to 24' 8"	$16 "$	35.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

(a) SUSTAINABLE FORESTRY INITIATIVE

Weyerhaeuser

ForteWEB Software Operator	Job Notes
Holly	
SSF Engineers	
(817) 475-3103	
hashford@ssfengineers.com	

FLOOR, Floor: J oist B1

1 piece(s) 16 " TJ I® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$926 @ 41 / 2^{\prime \prime}$	$1485(3.50 ")$	Passed (62\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Shear (lbs)	$890 @ 51 / 2^{\prime \prime}$	2190	Passed (41\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$3981 @ 99^{\prime \prime} 27 / 8^{\prime \prime}$	5710	Passed (70\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.172 @ 9$ ' $27 / 8^{\prime \prime}$	0.443	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Total Load Defl. (in)	$0.326 @ 99^{\prime} 27 / 8 "$	0.886	Passed (L/652)	--	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
TJ-Pro ${ }^{\text {TM }}$ Rating	53	40	Passed	--	--

System : Floor
Member Type : Joist
Building Use : Residential
Building Code : IBC 2015
Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240)
- Top Edge Bracing (Lu): Top compression edge must be braced at 5' o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $18^{\prime} 3$ " o/c unless detailed otherwise.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $23 / 32$ " Weyerhaeuser Edge ${ }^{\text {TM }}$ Panel (24 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{T M}$ Rating include: None.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1-Stud wall - HF	5.50"	4.25"	$1.75{ }^{\prime \prime}$	444	493	937	1 1/4" Rim Board
2-Stud wall - HF	5.50"	4.25"	1.75"	444	493	937	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Load	Location (Side)	Spacing	Dead $(\mathbf{0 . 9 0})$	Floor Live $(\mathbf{1 . 0 0})$	Comments
1 - Uniform (PSF)	0 to $18^{\prime} 53 / 4^{\prime \prime}$	$16^{\prime \prime}$	36.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

SUSTAINABLE FORESTRY INITIATIVE
Weyerhaeuser

ForteWEB Software Operator	Job Notes
Holly	
SSF Engineers	
(817) 475-3103	
hashford@ssfengineers.com	

Project:

Beam		Main-B9	GL	$63 / 4 \times$	13 1/2
w=	385	plf	$\mathrm{R}=$	1,781	lbs
L=	9.25	ft	$\mathrm{M}=$	4,118	ft-lbs
$\mathrm{b}=$	6.75	in	$\mathrm{Fb}=$	241	psi
$\mathrm{d}=$	13.50	in	$\mathrm{Fv}=$	22	psi
E=	1800	ksi	$\Delta=$	0.03	in
$\mathrm{Cv}=$	1.00	≤ 1.0	I/	4360	

Beam		Main-B11	PSL	3 1/2 x	
w1=	722	plf	R1 =	4,071	lbs
w2=	1,007	plf	R2 =	5,126	lbs
L1=	6.25	ft	$\mathrm{M}=$	11,340	lb-ft
L2=	3.25	ft	$\mathrm{Fb}=$	911	psi
X=	6.3	ft	Fv =	101	psi
$\mathrm{P}=$	1,411	lbs	$\Delta=$	0.07	in
$\mathrm{b}=$	3.50	in	$1 /$	1,649	
d=	16.00	in	$\mathrm{Cv}=$	1.00	
E=	2,000	ksi			

Beam		Main-B10	PSL	$31 / 2 \times$	
w1=	101	plf	R1 =	1,293	lbs
w2=	101	plf	R2 =	1,411	lbs
L1=	6.67	ft	$\mathrm{M}=$	6,370	lb-ft
L2=	5.67	ft	$\mathrm{Fb}=$	512	psi
X=	6.7	ft	Fv =	34	psi
$\mathrm{P}=$	1,455	lbs	$\Delta=$	0.06	in
$\mathrm{b}=$	3.50	in	I/	2,369	
$\mathrm{d}=$	16.00	in	$\mathrm{Cv}=$	1.00	
E=	2,000	ksi			

Beam		Main-B12	GL	$51 / 8 \times 2$	22 1/2
W=	1012.5	plf	$\mathrm{R}=$	6,075	lbs
L=	12	ft	$\mathrm{M}=$	18,225	$\mathrm{ft}-\mathrm{lbs}$
$\mathrm{b}=$	5.13	in	$\mathrm{Fb}=$	506	psi
d=	22.50	in	$\mathrm{Fv}=$	54	psi
E=	1800	ksi	$\Delta=$	L	in
$\mathrm{Cv}=$	0.99	≤ 1.0	I/	\#VALUE!	

Beam		Main-B13	PSL	$31 / 2 \mathrm{x}$	
w1=	724	plf	R1=	2131	lbs
w2=	663	plf	R2=	6,512	lbs
L1=	8	ft	M+=	3,138	$\mathrm{lb}-\mathrm{ft}$
L2=	4	ft	M-=	6,111	$\mathrm{lb}-\mathrm{ft}$
X=	4.00	ft	$\mathrm{Fb}=$	491	psi
$\mathrm{P}=$	203	lbs	Fv=	72	psi
$\mathrm{b}=$	3.50	in	Δ span=	0.010	in
d=	16.00	in	I span/	9,376	
E=	2,000	ksi	Δ cant=	0.02	in
$\mathrm{Cv}=$	1.00		I cant/	4,586	

Project:

Yuan Residence	Date:	06/19/19 Floor Beams
	Project \#:	
	Design:	haa

Beam		Main-B14	PSL	$31 / 2 \times$	
w=	684	plf	$\mathrm{R}=$	2,223	lbs
L=	6.5	ft	$\mathrm{M}=$	3,612	ft-lbs
$\mathrm{b}=$	3.50	in	$\mathrm{Fb}=$	290	psi
d=	16.00	in	$\mathrm{Fv}=$	35	psi
E=	2000	ksi	$\Delta=$	0.01	in
Cv=	1.00	≤ 1.0	$1 /$	6784	

Beam		Main-B15	HF	5 x	12
w1=	253	plf	R1 =	1,678	lbs
w2=	466	plf	R2 =	2,439	lbs
L1=	5	ft	$\mathrm{M}=$	5,222	$\mathrm{lb}-\mathrm{ft}$
L2=	3	ft	$\mathrm{Fb}=$	660	psi
X=	5.0	ft	$\mathrm{Fv}=$	59	psi
$\mathrm{P}=$	1,453	lbs	$\Delta=$	0.07	in
$\mathrm{b}=$	4.50	in	$1 /$	1,304	
$\mathrm{d}=$	11.25	in	$\mathrm{Cv}=$	1.00	
E=	1,300	ksi			

\qquad Date: \qquad
Project \#: \qquad
\qquad
\qquad Design: \qquad \square

Sheet:

Licensed to 43243242343424343
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com
Date: 4/22/2019
File: K:\2019101519-2019-01 YuanlShoringlEast wall of driveway.sh8
Wall Height=6.0 Pile Diameter=1.5 Pile Spacing=8.0 Wall Type: 2. Soldier Pile, Drilled
PILE LENGTH: Min. Embedment $=9.61$ Min. Pile Length $=15.61$
MOMENT IN PILE: Max. Moment=42.21 per Pile Spacing=8.0 at Depth=10.18
PILE SELECTION:
Request Min. Section Modulus $=15.3$ in $3 /$ pile $=251.50 \mathrm{~cm} 3 /$ pile, $F y=50 \mathrm{ksi}=345 \mathrm{MPa}, \mathrm{Fb} / \mathrm{Fy}=0.66$ W12X22 has Section Modulus $=25.4 \mathrm{in} 3 /$ pile $=416.23 \mathrm{~cm} 3 /$ pile. It is greater than Min. Requirements! Top Deflection $=0.35(\mathrm{in})$ based on $E(\mathrm{ksi})=29000.00$ and $1(\mathrm{in} 4) /$ pile $=156.0$

DRIVING PRESSURES (ACTIVE, WATER, \& SURCHARGE):

Z1	P1	Z2	P2	Slope
0	0	50	2.250	.045
*eq				
0	.036	6	0.036	0

PASSIVE PRESSURES:

Z1	P1	Z2	P2	Slope
6	0	50	17.60	.4

ACTIVE SPACING:

No.	Z depth	Spacing
1	0.00	8.00
2	6.00	1.50

PASSIVE SPACING:

No.	Z depth	Spacing
1	6.00	3.00

UNITS: Width,Spacing,Diameter,Length,and Depth - ft; Force - kip; Moment -kip-ft
Friction,Bearing, and Pressure - ksf; Pres. Slope - kip/ft3; Deflection - in

Yuan Residence
 East wall of driveway

PRESSURE, SHEAR, MOMENT, AND DEFLECTION DIAGRAMS

Based on pile spacing: 8.0 foot or meter
User Input Pile, W12X22: $\quad \mathrm{E}(\mathrm{ksi})=29000.0, \quad$ I (in4)/pile $=156.0$
File: K:|2019101519-2019-01 YuanlShoringlEast wall of driveway.sh8
<ShoringSuite> CIVILTECH SOFTWARE USA www.civiltech.com

SHORING WALL CALCULATION SUMMARY

The leading shoring design and calculation software Software Copyright by CivilTech Software www. civiltech.com

Shoringsuite Software is developed by CivilTech Software, Bellevue, WA, USA.
The calculation method is based on the following references:

1. FHWA 98-011, FHWA-RD-97-130, FHWA SA 96-069, FHWA-IF-99-015
2. STEEL SHEET PILING DESIGN MANUAL by Pile Buck Inc., 1987
3. DESIGN MANUAL DM-7 (NAVFAC), Department of the Navy, May 1982
4. TRENCHING AND SHORING MANUAL Revision 12, California Department of Transportation, January 2000
5. EARTH SUPPORT SYSTEM \& RETAINING STRUCTURES, Pile Buck Inc. 2002
6. DESIGN OF SHEET PILE WALLS, EM 1110-2-2504, U.S. Army Corps of Engineers, 31 March 1994
7. EARTH RETENTION SYSTEMS HANDBOOK, Alan Macnab, McGraw-Hi11. 2002
8. Temporary structures in Construction, Robert T. Ratay (Co-author of chapter 7: John J. Peirce), McGraw-Hill. 2012
9. AASHTO HB-17, American Association of State and Highway Transportation officials, 2 september 2002

UNITS: Width/Spacing/Diameter/Length/Depth - ft, Force - kip, Moment - kip-ft, Friction/Bearing/Pressure - ksf, Pres. Slope - kip/ft3, Deflection - in Licensed to 43243242343424343
Date: 4/22/2019 File: K:\2019\01519-2019-01 Yuan\Shoring\East wall of driveway.sh8
Title: Yuan Residence Subtitle: East wall of driveway


```
Wall Type: 2. Soldier Pile, Drilled
    wall Height: 6.00
    Pile Diameter: 1.50
    Pile spacing: }8.0
    Factor of Safety (F.S.): 1.00
Lateral Support Type (Braces): 1. No
    Top Brace Increase (Multi-Bracing): Add 15%*
Embedment Option: 1. Yes
    Friction at Pile Tip: No
Pile Properties:
    Steel Strength, Fy: 50 ksi = 345 MPa
    Allowable Fb/Fy: 0.66
    Elastic Module, E: 29000.00
    Moment of Inertia, I: 156.00
    User Input Pile: W12\times22
* DRIVING pressure (active, Water, & Surcharge) *
\begin{tabular}{ccccccc} 
No. & Z1 top & Top Pres. & Z2 bottom & Bottom Pres. & Slope \\
\hdashline 1 & 0 & 0 & 50 & 2.250 & .045 \\
2 & "eq & 0 & .036 & 6 & 0.036 & 0
\end{tabular}
* PASSIVE PRESSURE *
\begin{tabular}{llllll} 
No. & Z1 top & Top Pres. & Z2 bottom & Bottom Pres. & Slope
\end{tabular}
```

Page 1

The calculated moment and shear are per pile spacing. Sheet piles are per one foot or meter; soldier piles are per pile.

Top Pressures start at depth $=0.00$

$==|$| $\quad D 1=0.00$ |
| ---: |
| |
| $D 2=6.00$ |
| |
| $D 3=15.61$ |

D1 - TOP DEPTH
D2 - EXCAVATION BASE
D3 - PILE TIP
MOMENT equilibrium AT DEPTH=14.01 WITH EMBEDMENT OF 8.01
FORCE equilibrium AT DEPTH $=15.61$ WITH EMBEDMENT OF 9.61
The program calculates an embedment for moment equilibrium, then increase the embedment by 1.2

* EMBEDMENT Notes *

Based on USS Design Manual, first calculate embedment for moment equilibrium, then increased the embedment to get the design depth.
The embedment for moment equilibrium is 8.01
The program calculates an embedment for moment equilibrium, then increase the embedment by 1.2
The total desigh embedment is 9.61
Embedment Information:
If 20% increased, the total design embedment is 9.61
If 30% increased, the total design embedment is 10.41
If 40% increased, the total design embedment is 11.21
If 50% increased, the total design embedment is 12.01

```
* MOMENT IN PILE (per pile spacing)*
```

Pile spacing: sheet piles are one foot or one meter; soldier piles are one pile.
Overall Maximum Moment $=42.21$ at 10.18
Maximum Shear $=24.74$
Moment and Shear are per pile spacing: 8.0 foot or meter

* VERTICAL LOADING *
vertical Loading from Braces $=0.00$
Vertical Loading from External Load $=0.00$
Total Vertical Loading $=0.00$

Overall Maximum Moment $=42.21$ at 10.18
The pile selection is based on the magnitude of the moment only. Axial force is neglected.

Request min. Section Modulus $=15.35 \mathrm{in} 3 / \mathrm{pile}=251.50 \mathrm{~cm} 3 / \mathrm{pile}, \mathrm{Fy}=50 \mathrm{ksi}=345$ $\mathrm{MPa}, \mathrm{Fb} / \mathrm{Fy}=0.66$

W12×22 has been found in soldier pile list!
(English Units):
Area $=6.48 \mathrm{in}$. Depth $=12.3 \mathrm{in}$. Width $=4.03 \mathrm{in}$. Height= 12 in .
Flange thickness $=0.425 \mathrm{in}$. web thickness $=0.26 \mathrm{in}$.
$I X=156$ in4/pile $\quad S X=25.4$ in3/pile $\quad I y=4.66$ in4/pile $\quad S y=2.31 \mathrm{in} 3 / \mathrm{pile}$
(Metric Units):
$I X=64.93 \times 100 \mathrm{~cm} 4 / \mathrm{pile} \quad S X=416.23 \mathrm{~cm} 3 / \mathrm{pi} \mathrm{fe} \quad \mathrm{I}=1.94 \times 100 \mathrm{~cm} 4 / \mathrm{pile} \quad \mathrm{S}=37.85$
cm3/pile

The pile selection is based on the magnitude of the moment only. Axial force is neglected.

W12X22 is capable to support the shoring!
Top deflection $=0.352(\mathrm{in})$
Max. deflection $=0.352$ (in)
*********************** LAGGING SIZE ESTIMATION **********************
Max. Pressure above base $=0.31$
Piles are more rigid than timber lagging, due to arching, only portion of pressures are acting to lagging, $30-50 \%$ loading is suggested.

If 50% loading is used for lagging design, Design Pressure $=0.15$
Pile spacing $=8.0$, Max. Moment in lagging $=1.22$
For $4^{\prime \prime x 12 " ~ T i m b e r, ~ s e c t i o n ~ M o d u l e s ~} s=23.47$ in3. The request allowable bending strength, $\mathrm{fb}=\mathrm{M} / \mathrm{S}=0.63$

For 6 " $\times 12$ " Timber, Section Modules $S=57.98 \mathrm{in} 3$. The request allowable bending strength, $\mathrm{fb}=\mathrm{M} / \mathrm{s}=0.25$

If 30% loading is used for lagging design, Design Pressure $=0.09$
Pile Spacing $=8.0$, Max. Moment in lagging $=0.73$
For 4 " $\times 12^{\prime \prime}$ "Timber, section modules $\mathrm{S}=23.47 \mathrm{in3}$. The request allowable bending strength, $\mathrm{fb}=\mathrm{M} / \mathrm{s}=0.38$

For $6^{\prime \prime} \times 12^{\prime \prime}$ Timber, Section Modules $\mathrm{S}=57.98 \mathrm{in} 3$. The request allowable bending strength, $\mathrm{fb}=\mathrm{M} / \mathrm{S}=0.15$

Unit: Pressure: ksf, spacing: ft, Moment: kip-ft, Bending Strength, fb: ksi

Helical Ardar Wha

ExSTG

SHored Contrina

Lohomig Dimarim:

Whater Desiga

$$
\begin{aligned}
w & =1.92^{4 / 6} \\
& =8^{\circ} 0 \%
\end{aligned}
$$

As A Mutispa $\mathrm{Bm}_{m} M_{\text {max }}=15.36 \mathrm{6m}$

$$
R_{m * r}=19.2^{2}
$$

USTuth CuAnate $S_{\text {rifid }} \frac{15.36^{64}(12)}{36 / 1.67}=8.5^{\mathrm{in}^{3}}$ NoGoon
uscug tube

$$
\begin{aligned}
& S_{\text {rid }}=\frac{15.36^{6}(12)}{4611.6}=6.7^{3} \\
& S_{t 2 t}=11 S S 8 \times 4 \times 1 / 2 \quad S_{y}=11.8
\end{aligned}
$$

\qquad
\qquad

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page: 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12
License: KW-06052576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 6.16 in, \#5@ 9.56 in, \#6@ 13.57 in, \#7@ 18.51 in , \#8@ 24.37 in , \#9@ 30.
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Key: No key defined

Min footing T\&S reinf Area	$2.30 \quad$ in2
Min footing T\&S reinf Area per foot	$0.39 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 6.17 in	\#4@ 12.35 in
\#5@ 9.57 in	\#5@ 19.14 in
\#6@ 13.58 in	\#6@ 27.16 in

Title Retaining Wall Schedule
Page: 3
Date: 16 JUL 2019

Dsgnr: haa
Description....
10'-0" Retaining Wall w/ Slab

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-06052576	
License To :SWENSON SAY FAGET	Cantilevered Retaining Wall

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.000	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information

Title Retaịning Wall Schedule
Page: 2
Date: 16 JUL 2019

Dsgnr: haa
Description....
3'-0" Retaining Wall w/ Slab, w/ Seismic

This Wall in File: K:L2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

	Cantilevered Retaining Wall
License : KW-06052576 License To : SWENSON	Cantilevered Retaining Wall

License: KW-06052576
License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Concrete Stem Rebar Area Details

Horizontal Reinforcing	
Min Stem T\&S Reinf Area 0.576 in2	
Min Stem T\&S Reinf Area per ft of stem Height : $0.192 \mathrm{in} 2 / \mathrm{ft}$	
Horizontal Reinforcing Options :	
One layer of :	Two layers of :
\#4@ 12.50 in	\#4@ 25.00 in
\#5@ 19.38 in	\#5@ 38.75 in
\#6@ 27.50 in	\#6@ 55.00 in
sign Results	
Toe	Heel
565	565 psf
50	$48 \mathrm{ft}-\mathrm{\#}$
17	$49 \mathrm{ft}-\mathrm{\#}$
33	$0 \mathrm{ft}-\mathrm{\#}$
ar $=0.22$	0.03 psi
$=40.00$	40.00 psi
$=$ None Spec'd $=$ None Spec'd $=$ None Spec'd	
$=$	$0.00 \mathrm{ft}-\mathrm{lbs}$
sion, phi Tu =	0.00 ft -lbs

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 13.88 in, \#5@ 21.52 in, \#6@ 30.55 in, \#7@ 41.66 in, \#8@ 54.85 in, \#9@ 6
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)* ${ }^{*}$ Sm
Key: No key defined

Min footing T\&S reinf Area	$0.26 \quad$ in2
Min footing T\&S reinf Area per foot	$0.17 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 13.89 in	\#4@ 27.78 in
\#5@ 21.53 in	\#5@ 43.06 in
\#6@ 30.56 in	\#6@ 61.11 in

Title Retainning Wall Schedule
Page: 3
Date: 16 JUL 2019

Dsgnr: haa
Description....
3'-0" Retaining Wall w/ Slab, w/ Seismic

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.
RetainPro (c) 1987-2019, Build 11.19.06.12

License $:$ KW-06052576
License To : SWENSON SAY FAGET

License: KW-06052576
License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Summary of Overturning \& Resisting Forces \& Moments

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.000 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page : 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12
License: KW-0652576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

Cantilevered Retaining Wall
Code: IBC 2012,ACI 318-11,ACI 530-11
License : KW-06052576
License to : SWENSON SAY FAGET

Footing Design Results			
		Toe	Heel
Factored Pressure	=	1,081	1,081 psf
Mu' : Upward	=	10,949	$966 \mathrm{ft}-\#$
Mu' : Downward	=	3,493	1,916 ft-\#
Mu: Design	=	7,455	$950 \mathrm{ft}-\mathrm{\#}$
Actual 1-Way Shear	=	13.46	7.41 psi
Allow 1-Way Shear	=	75.00	40.00 psi
Toe Reinforcing	= \# 7 @ 12.00 in		
Heel Reinforcing	= \# 4 @ 18.00 in		
Key Reinforcing	$=$ None Spec'd		
Footing Torsion, Tu			0.00 ft -lbs
Footing Allow. Torsion		hi Tu	0.00 ft -lbs

If torsion exceeds allowable, provide

supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings

Toe: \#4@ 6.16 in, \#5@ 9.56 in, \#6@ 13.57 in, \#7@ 18.51 in, \#8@ 24.37 in, \#9@ 30.
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Key: No key defined

Min footing T\&S reinf Area	$2.59 \quad$ in2
Min footing T\&S reinf Area per foot	$0.39 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 6.17 in	\#4@ 12.35 in
\#5@ 9.57 in	\#5@ 19.14 in
\#6@ 13.58 in	\#6@ 27.16 in

Title Retaining Wall Schedule
Page: 3 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0 pci	
Horizontal Defl @ Top of Wall (approximate only)	0.000	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page: 2 Dsgnr: haa

Date: 18 JUN 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12
License : KW-06052576
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

Cantilevered Retaining Wall

Code: IBC 2012,ACI 318-11,ACI 530-11
License : KW-06052576
License To : SWENSON SAY FAGET

Vertical Reinforcing	Horizontal Reinforcing	
$0.7739 \mathrm{in} 2 / \mathrm{ft}$		
$1.0319 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area 3.000 in2	
0.2975 in2/ft	Min Stem T\&S Reinf Area per ft of s	
$0.216 \mathrm{in} 2 / \mathrm{ft}$	Horizontal Reinforcing Options :	
===========	One layer of	Two
$0.7739 \mathrm{in} 2 / \mathrm{ft}$	\#4@ 10.00 in	
$1 \mathrm{in} 2 / \mathrm{ft}$	\#5@ 15.50 in	
$1.0075 \mathrm{in} 2 / \mathrm{ft}$	\#6@ 22.00 in	

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 6.16 in, \#5@ 9.56 in, \#6@ 13.57 in, \#7@ 18.51 in , \#8@ 24.37 in, \#9@ 30.
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Key: No key defined

Min footing T\&S reinf Area	$2.62 \quad$ in2
Min footing T\&S reinf Area per foot	$0.39 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 6.17 in	\#4@ 12.35 in
\#5@ 9.57 in	\#5@ 19.14 in
\#6@ 13.58 in	\#6@ 27.16 in

Title Retaịning Wall Schedule
Page: 3 Dsgnr: haa

Date: 18 JUN 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-0602576	
License To : SWENSON SAY FAGET	Cantilevered Retaining Wall

License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Summary of Overturning \& Resisting Forces \& Moments

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.000 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page: 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12
License: KW-06052576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

Cantilevered Retaining Wall

Code: IBC 2012,ACI 318-11,ACI 530-11
License : KW-06052576
License To : SWENSON SAY FAGET
Horizontal Reinforcing
Min Stem T\&S Reinf Area 1.920 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of : Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in \quad \#5@ 38.75 in
\#6@ 27.50 in
\#6@ 55.00 in

Footing Design Results			
		Toe	Heel
Factored Pressure	=	996	996 psf
Mu' : Upward	=	7,002	1,125 ft-\#
Mu' : Downward	=	2,426	2,000 ft-\#
Mu: Design	$=$	4,577	$875 \mathrm{ft}-\#$
Actual 1-Way Shear	=	8.29	6.06 psi
Allow 1-Way Shear		40.00	40.00 psi
Toe Reinforcing		\# 7 @ 12.0	
Heel Reinforcing		\# 4 @ 18.0	
Key Reinforcing		None Spe	
Footing Torsion, Tu			0.00 ft -lbs
Footing Allow. Torsion,		hi Tu	$0.00 \mathrm{ft}-\mathrm{lbs}$

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 6.16 in, \#5@ 9.56 in, \#6@ 13.57 in, \#7@ 18.51 in, \#8@ 24.37 in, \#9@ 30.
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Key: No key defined

Min footing T\&S reinf Area	$2.30 \quad$ in2
Min footing T\&S reinf Area per foot	$0.39 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 6.17 in	\#4@ 12.35 in
\#5@ 9.57 in	\#5@ 19.14 in
\#6@ 13.58 in	\#6@ 27.16 in

Title Retainning Wall Schedule
Page: 3
Date: 16 JUL 2019

Dsgnr: haa
Description....
10'-0" Retaining Wall w/ Slab, w/ Seismic

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.
RetainPro (c) 1987-2019, Build 11.19.06.12

License $:$ KW-06052576
License To : SWENSON SAY FAGET

License: KW-06052576
License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Summary of Overturning \& Resisting Forces \& Moments

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.000 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page: 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12
License: KW-06052576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

License To : SWENSON SAY FAGET
Horizontal Reinforcing
Min Stem T\&S Reinf Area 1.536 in2
Min Stem T\&S Reinf Area per ft of s
Horizontal Reinforcing Options :
One layer of : \quad Two layers of :

\#4@ 12.50 in	\#4@ 25.00 in
\#5@ 19.38 in	\#5@ 38.75 in
\#6@ 27.50 in	\#6@ 55.00 in

If torsion exceeds allowable, provide

supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings

Toe: \#4@ 9.25 in, \#5@ 14.34 in, \#6@ 20.36 in, \#7@ 27.77 in, \#8@ 36.56 in, \#9@ 46
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)*Sm
Key: No key defined

Min footing T\&S reinf Area	$1.14 \quad$ in2
Min footing T\&S reinf Area per foot	$0.26 \quad$ in2 ift
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 9.26 in	\#4@ 18.52 in
\#5@ 14.35 in	\#5@ 28.70 in
\#6@ 20.37 in	\#6@ 40.74 in

Title Retaining Wall Schedule
Page: 3 Dsgnr: haa Description.... 8'-0" Retaining Wall w/ Slab

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-06052576	
License To :SWENSON SAY FAGET	Cantilevered Retaining Wall

Item	Force lbs	RTURNIN Distance ft	Moment $\mathrm{ft}-$ \#		Force lbs	ISTING..... Distance ft	Moment ft-\#
HL Act Pres (ab water tbl)	2,314.4	3.83	4,252.5	Soil Over HL (ab. water tbl)	1,879.2		3,887.2
HL Act Pres (be water tbl)				Soil Over HL (bel. water tbl)		5.17	3,887.2
Hydrostatic Force				Watre Table			
Buoyant Force				Sloped Soil Over Heel =			
Surcharge over Heel				Surcharge Over Heel =			
Surcharge Over Toe				Adjacent Footing Load =			
Adjacent Footing Load				Axial Dead Load on Stem =			
Added Lateral Load				* Axial Live Load on Stem =			
Load @ Stem Above Soil				Soil Over Toe		1.38	
	=			Surcharge Over Toe			
				Stem Weight(s) =	800.0	3.08	2,466.7
		O.T.M. =		Earth @ Stem Transitions=			
Total	1,417.5		4,252.5	Footing Weight =	661.5	2.21	1,458.6
				Key Weight =			
Resisting/Overturning			. 84	Vert. Component			
Vertical Loads used for Soil Pressure		2,454.8 lbs		Total =	2,454.8	R.M.=	7,812.5

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.000	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Name/Number : 061819 Typica
Title Retaịning Wall Schedule
Page: 1

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retainning Wall Schedule
Page: 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12
License: KW-06052576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

License To : SWENSON SAY FAGET

Vertical Reinforcing Horizontal Reinforcing
As (based on applied moment)
$0.2464 \mathrm{in} 2 / \mathrm{ft}$
200bd/fy : 200(12)(6.1875)/60000 :
$25 \mathrm{in} 2 / \mathrm{ft}$
$0.2475 \mathrm{in} 2 / \mathrm{ft}$
$0.1728 \mathrm{in} 2 / \mathrm{ft}$
============
$0.2475 \mathrm{in} 2 / \mathrm{ft}$
$0.31 \mathrm{in} 2 / \mathrm{ft}$
$0.8382 \mathrm{in} 2 / \mathrm{ft}$
Horizontal Reinforcing
Min Stem T\&S Reinf Area 1.536 in2
Min Stem T\&S Reinf Area per ft of s
Horizontal Reinforcing Options :
One layer of : \quad Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in
\#6@ 27.50 in
\#5 38.75 in
\#6@ 55.00 in

Footing Design Results			

If torsion exceeds allowable, provide

supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings

Toe: \#4@ 9.25 in, \#5@ 14.34 in, \#6@ 20.36 in, \#7@ 27.77 in, \#8@ 36.56 in, \#9@ 46
Heel: Not req'd: $M u$ < phi*5*lambda*sqrt(f'c)* ${ }^{*}$ Sm
Key: No key defined

Min footing T\&S reinf Area	$1.15 \quad$ in2
Min footing T\&S reinf Area per foot	0.26 in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 9.26 in	\#4@ 18.52 in
\#5@ 14.35 in	\#5@ 28.70 in
\#6@ 20.37 in	\#6@ 40.74 in

Title Retaịning Wall Schedule
Page: 3
Date: 16 JUL 2019

Dsgnr: haa
Description....
8'-0" Retaining Wall w/ Slab, w/ Seismic

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-06052576	
License To :SWENSON SAY FAGET	Cantilevered Retaining Wall

License: KW-06052576
License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Summary of Overturning \& Resisting Forces \& Moments

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.000 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Name/Number : 061819 Typica
Title Retainning Wall Schedule
Page: 1

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page: 2
Dsgnr: haa
Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro(c) 1987-2019, Build 11.19.06.12
License: KW-06052576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

Bottom Stem	Vertical
As (based on applied moment) :	0.0755
(4/3) * As :	0.1007
200bd/fy : 200(12)(6.25)/60000 :	0.25 in2
0.0018 bh : 0.0018(12)(8) :	0.1728
Required Area	0.1728
Provided Area :	$0.2 \mathrm{in2} / \mathrm{t}$
Maximum Area :	0.8467
Footing Data	
Toe Width	2.25 ft
Heel Width	1.08
Total Footing Width	3.33
Footing Thickness	10.00 in
Key Width	0.00 in
Key Depth	0.00 in
Key Distance from Toe	0.00 ft
f'c $=\quad 2,500 \mathrm{psi} \quad \mathrm{Fy}=$ Footing Concrete Density = Min. As \%	60,000 psi
	150.00 pcf
	0.0018
Cover @ Top 2.00 @	$\mathrm{m}=3.00$ in

Cantilevered Retaining Wall

Code: IBC 2012,ACI 318-11,ACI 530-11
License: KW -06052576
License To : SWENSON SAY FAGET

Concrete Stem Rebar Area Details

Horizontal Reinforcing
Min Stem T\&S Reinf Area 1.152 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of : Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in \quad \#5@ 38.75 in
\#6@ 27.50 in \quad \#6@ 55.00 in

Footing Design Results		
	Toe	Heel
Factored Pressure	558	558 psf
Mu' : Upward	1,411	$48 \mathrm{ft-}$
Mu' : Downward	570	$90 \mathrm{ft}-\mathrm{\#}$
Mu: Design	842	42 ft -
Actual 1-Way Shear	5.47	2.12 psi
Allow 1-Way Shear	$=40.00$	40.00 psi
Toe Reinforcing	$=$ None Spec'd	
Heel Reinforcing	$=$ None Spec'd	
Key Reinforcing	$=$ None Spec'd	
Footing Torsion, Tu	=	0.00 ft -lbs
Footing Allow. Torsio	, phi Tu	$0.00 \mathrm{ft}-\mathrm{lbs}$

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 11.10 in, \#5@ 17.21 in , \#6@ 24.43 in, \#7@ 33.32 in, \#8@ 43.88 in, \#9@ 5
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)* ${ }^{*}$ Sm
Key: No key defined

Min footing T\&S reinf Area	$0.72 \quad$ in2
Min footing T\&S reinf Area per foot	$0.22 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 11.11 in	\#4@ 22.22 in
\#5@ 17.22 in	\#5@ 34.44 in
\#6@ 24.44 in	\#6@ 48.89 in

Title Retaining Wall Schedule
Page: 3
Dsgnr: haa
Date: 16 JUL 2019

This Wall in File: K:\2019101519-2019-01 Yuan\Calculations\pin piles1061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-06052576	
License To :SWENSON SAY FAGET	Cantilevered Retaining Wall

License: KW-06052576
License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Summary of Overturning \& Resisting Forces \& Moments

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.000 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Name/Number : 061819 Typica

Title Retainning Wall Schedule
Page: 1
Dsgnr: haa
Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page: 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019101519-2019-01 Yuan\Calculations\pin piles1061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12
License: KW-06052576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 11.10 in, \#5@ 17.21 in , \#6@ 24.43 in, \#7@ 33.32 in, \#8@ 43.88 in, \#9@ 5
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)* ${ }^{*}$ Sm
Key: No key defined

Min footing T\&S reinf Area	$0.72 \quad$ in2
Min footing T\&S reinf Area per foot	$0.22 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 11.11 in	\#4@ 22.22 in
\#5@ 17.22 in	\#5@ 34.44 in
\#6@ 24.44 in	\#6@ 48.89 in

Title Retaịning Wall Schedule
Page: 3
Date: 16 JUL 2019

Dsgnr: haa
Description....
6'-0" Retaining Wall w/ Slab, w/ Seismic

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-06052576	
License To :SWENSON SAY FAGET	Cantilevered Retaining Wall

License: KW-06052576
License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Summary of Overturning \& Resisting Forces \& Moments

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.000 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page: 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro(c) 1987-2019, Build 11.19.06.12
License: KW-06052576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

Cantilevered Retaining Wall
 Cantlevered Retaining WaII

Code: IBC 2012,ACI 318-11,ACI 530-11
License : KW-06052576
License 1o: SWENSON SAY FAGET

Hortical Reinforcing Reinforcing
$0298 \mathrm{in2/ft} \quad$ Min Stem T\&S Reinf Area 0.768 in2
$0.25 \mathrm{in} 2 / \mathrm{ft} \quad$ Min Stem T\&S Reinf Area per ft of stem Height : $0.192 \mathrm{in2/ft}$
Horizontal Reinforcing Options :
One layer of : Two layers of :
\#4@ 12.50 in \#4@ 25.00 in
\#5@ 19.38 in \#5@ 38.75 in
\#6@ 27.50 in \#6@ 55.00 in

Footing Design Results			
		Toe	Heel
Factored Pressure	=	548	548 psf
Mu' : Upward		274	$47 \mathrm{ft-} \mathrm{\#}$
Mu' : Downward		98	$62 \mathrm{ft}-\mathrm{\#}$
Mu: Design		177	15 ft -\#
Actual 1-Way Shear	$=$	2.85	0.99 psi
Allow 1-Way Shear		40.00	40.00 psi
Toe Reinforcing		None Spec'd	
Heel Reinforcing		None Spec'd	
Key Reinforcing		None Spec'd	
Footing Torsion, Tu		=	0.00 ft -lbs
Footing Allow. Torsion,		hi Tu	0.00 ft -lbs

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 13.88 in, \#5@ 21.52 in, \#6@ 30.55 in, \#7@ 41.66 in, \#8@ 54.85 in, \#9@ 6
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)* ${ }^{*}$ Sm
Key: No key defined

Min footing T\&S reinf Area	$0.36 \quad$ in2
Min footing T\&S reinf Area per foot	$0.17 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 13.89 in	\#4@ 27.78 in
\#5@ 21.53 in	\#5@ 43.06 in
\#6@ 30.56 in	\#6@ 61.11 in

Title Retaining Wall Schedule
Page: 3
Dsgnr: haa
Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-06052576	
License To :SWENSON SAY FAGET	Cantilevered Retaining Wall

License: KW-06052576
License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Summary of Overturning \& Resisting Forces \& Moments

Item	Force lbs	Distance ft	Moment		Force lbs	$\begin{gathered} \text { SISTING...... } \\ \text { Distance } \\ \mathrm{ft} \end{gathered}$	Moment ft-\#
HL Act Pres (ab water tbl)	2,314.4	3.83	592.8	Soil Over HL (ab. water tbl)	1,879.2	5.17	387.2
HL Act Pres (be water tbl)				Soil Over HL (bel. water tbl)		5.17	387.2
Hydrostatic Force				Watre Table			
Buoyant Force				Sloped Soil Over Heel			
Surcharge over Heel				Surcharge Over Heel			
Surcharge Over Toe				Adjacent Footing Load =			
Adjacent Footing Load				Axial Dead Load on Stem $=$			
Added Lateral Load				* Axial Live Load on Stem $=$			
Load @ Stem Above Soil				Soil Over Toe		0.50	
	=			Surcharge Over Toe			
				Stem Weight(s) =	400.0	1.33	533.3
Total	381.1	O.T.M.		Earth @ Stem Transitions=			
			592.8	Footing Weight	208.0	1.04	216.3
				Key Weight			
Resisting/Overturning Ratio		$=1.92$		Vert. Component			
Vertical Loads used for Soil Pressure $=$		814.7 lbs		Total $=$	814.7	R.M. $=$	1,136.8

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0 pci	
Horizontal Defl @ Top of Wall (approximate only)	0.000	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Project Name/Number : 061819 Typica

Title Retainning Wall Schedule
Page: 1
Dsgnr: haa
Date: 16 JUL 2019

This Wall in File: K:\2019101519-2019-01 Yuan\Calculations\pin piles1061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retainning Wall Schedule
Page: 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019101519-2019-01 Yuan\Calculations\pin piles1061819 Typical Detail Co-04-07.

RetainPro(c) 1987-2019, Build 11.19.06.12
License : KW-06052576
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

Cantilevered Retaining Wall
 Cantlevered Retaining Wall

Code: IBC 2012,ACI 318-11,ACI 530-11
License : KW-06052576
License 1o: SWENSON SAY FAGET

Vertical Reinforcing	Horizontal Reinforcing
$0.0308 \mathrm{in} 2 / \mathrm{ft}$	
$0.041 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area $0.768 \mathrm{in2}$
$0.25 \mathrm{in} 2 / \mathrm{ft}$	Min Stem T\&S Reinf Area per ft of s
$0.1152 \mathrm{in} 2 / \mathrm{ft}$	Horizontal Reinforcing Options :
$============$	One layer of :
$0.1152 \mathrm{in} 2 / \mathrm{ft}$	\#4o layers of :
$0.1333 \mathrm{in} 2 / \mathrm{ft}$	\#5@ 19.38 in
$0.8467 \mathrm{in} 2 / \mathrm{ft}$	\#6@ 27.50 in

If torsion exceeds allowable, provide
supplemental design for footing torsion.
Other Acceptable Sizes \& Spacings
Toe: \#4@ 13.88 in, \#5@ 21.52 in, \#6@ 30.55 in, \#7@ 41.66 in, \#8@ 54.85 in, \#9@ 6
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)* ${ }^{*}$ Sm
Key: No key defined

Min footing T\&S reinf Area	$0.36 \quad$ in2
Min footing T\&S reinf Area per foot	$0.17 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 13.89 in	\#4@ 27.78 in
\#5@ 21.53 in	\#5@ 43.06 in
\#6@ 30.56 in	\#6@ 61.11 in

Title Retaịning Wall Schedule
Page: 3
Date: 16 JUL 2019

Dsgnr: haa
Description....
4'-0" Retaining Wall w/ Slab, w/ Seismic

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-06052576	
License To :SWENSON SAY FAGET	Cantilevered Retaining Wall

License: KW-06052576
License To : SWENSON SAY FAGET
Cantilevered Retaining Wall
Summary of Overturning \& Resisting Forces \& Moments

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.000 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin piles\061819 Typical Detail Co-04-07.

Use menu item Settings > Printing \& Title Block to set these five lines of information for your program.

Title Retaịning Wall Schedule
Page: 2 Dsgnr: haa

Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12
License: KW-06052576,
License To : SWENSON SAY FAGET
Concrete Stem Rebar Area Details

Bottom Stem	Vertical
As (based on applied moment)	0.0094
(4/3) * As	0.0126
200bd/fy : 200(12)(6.25)/60000 :	0.25 in
0.0012bh : 0.0012(12)(8)	0.1152
Required Area :	0.1152
Provided Area	0.1333
Maximum Area	0.8467
Footing Data	
Toe Width	0.42 ft
Heel Width	1.08
Total Footing Width	1.50
Footing Thickness	8.00 in
Key Width	0.00 in
Key Depth	0.00 in
Key Distance from Toe	0.00 ft
f'c = 2,500 psi Fy = Footing Concrete Density =	$60,000 \mathrm{psi}$
	150.00 pcf
Min. As \%	0.0018
Cover @ Top 2.00 @ B	$\mathrm{m}=3.00 \mathrm{in}$

Cantilevered Retaining Wall

Code: IBC 2012,ACI 318-11,ACI 530-11
License: KW -06052576
License To : SWENSON SAY FAGET

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings

Toe: \#4@ 13.88 in, \#5@ 21.52 in, \#6@ 30.55 in, \#7@ 41.66 in, \#8@ 54.85 in, \#9@ 6
Heel: Not req'd: Mu < phi*5*lambda*sqrt(f'c)* ${ }^{*}$ Sm
Key: No key defined

Min footing T\&S reinf Area	$0.26 \quad$ in2
Min footing T\&S reinf Area per foot	$0.17 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 13.89 in	\#4@ 27.78 in
\#5@ 21.53 in	\#5@ 43.06 in
\#6@ 30.56 in	\#6@ 61.11 in

Title Retaining Wall Schedule
Page: 3
Dsgnr: haa
Date: 16 JUL 2019

This Wall in File: K:\2019\01519-2019-01 Yuan\Calculations\pin pilesl061819 Typical Detail Co-04-07.

RetainPro (c) 1987-2019, Build 11.19.06.12	
License : KW-06052576	
License To :SWENSON SAY FAGET	Cantilevered Retaining Wall

Item	Force lbs	$\begin{aligned} & \text { ERTURNIN } \\ & \text { Distance } \\ & \mathrm{ft} \end{aligned}$	$\underset{\mathrm{ft}-\#}{\text { Moment }}$		Force lbs	$\begin{aligned} & \text { SISTING..... } \\ & \text { Distance } \end{aligned}$ ft	Moment $\mathrm{ft}-\mathrm{\#}$		
HL Act Pres (ab water tbl)	2,314.4	3.83	287.6	Soil Over HL (ab. water tbl)	1,879.2	5.17	200.5		
HL Act Pres (be water tbl)				Soil Over HL (bel. water tbl)		5.17	200.5		
Hydrostatic Force				Watre Table					
Buoyant Force				Sloped Soil Over Heel					
Surcharge over Heel				Surcharge Over Heel					
Surcharge Over Toe				Adjacent Footing Load =					
Adjacent Footing Load				Axial Dead Load on Stem =					
Added Lateral Load				* Axial Live Load on Stem $=$					
Load @ Stem Above Soil				Soil Over Toe		0.21			
	$=$			Surcharge Over Toe					
				Stem Weight(s)	300.0	0.75	226.0		
Total		O.T.M.		Earth @ Stem Transitions=Footing Weight					
	235.3		287.6		150.0	0.75	112.5		
				Key Weight					
Resisting/Overturning				Vert. Component					
Vertical Loads used for Soil Pressure $=$		605.0 lbs		Total = 605.0 lbs R.M. $=\quad 539.0$ * Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.					

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.000	in

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

